Modulation of the distance dependence of paramagnetic relaxation enhancements by CSA x DSA cross-correlation.

نویسندگان

  • Guido Pintacuda
  • Andrei Kaikkonen
  • Gottfried Otting
چکیده

Paramagnetic metal ions with fast-relaxing electronic spin and anisotropic susceptibility tensor provide a rich source of structural information that can be derived from pseudo-contact shifts, residual dipolar couplings, dipole-dipole Curie spin cross-correlation, and paramagnetic relaxation enhancements. The present study draws attention to a cross-correlation effect between nuclear relaxation due to anisotropic chemical shielding (CSA) and due to the anisotropic dipolar shielding (DSA) caused by the electronic Curie spin. This CSA x DSA cross-correlation contribution seems to have been overlooked in previous interpretations of paramagnetic relaxation enhancements. It is shown to be sufficiently large to compromise the 1/r6 distance dependence usually assumed. The effect cannot experimentally be separated from auto-correlated DSA relaxation. It can increase or decrease the observed paramagnetic relaxation enhancement. Under certain conditions, the effect can dominate the entire paramagnetic relaxation, resulting in nuclear resonances narrower than in the absence of the paramagnetic center. CSAxDSA cross-correlation becomes important when paramagnetic relaxation is predominantly due to the Curie rather than the Solomon mechanism. Therefore the effect is most pronounced for relaxation by metal ions with large magnetic susceptibility and fast-relaxing electron spin. It most strongly affects paramagnetic enhancements of transverse relaxation in macromolecules and of longitudinal relaxation in small molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.

Magic-angle-spinning solid-state nuclear magnetic resonance (SSNMR) studies of natively diamagnetic uniformly (13)C,(15)N-enriched proteins, intentionally modified with side chains containing paramagnetic ions, are presented, with the aim of using the concomitant nuclear paramagnetic relaxation enhancements (PREs) as a source of long-range structural information. The paramagnetic ions are incor...

متن کامل

Site-specific labelling with a metal chelator for protein-structure refinement.

A single free Cys sidechain in the N-terminal domain of the E. coli arginine repressor was covalently derivatized with S-cysteaminyl-EDTA for site-specific attachment of paramagnetic metal ions. The effects of chelated metal ions were monitored with (15)N-HSQC spectra. Complexation of Co(2+), which has a fast relaxing electron spin, resulted in significant pseudocontact shifts, but also in peak...

متن کامل

Protein structure determination with paramagnetic solid-state NMR spectroscopy.

Many structures of the proteins and protein assemblies that play central roles in fundamental biological processes and disease pathogenesis are not readily accessible via the conventional techniques of single-crystal X-ray diffraction and solution-state nuclear magnetic resonance (NMR). On the other hand, many of these challenging biological systems are suitable targets for atomic-level structu...

متن کامل

Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.

The dependence on spin-lattice (T1) relaxation of the first-harmonic absorption EPR signal (V'1) detected in phase quadrature with the Zeeman modulation has been investigated both theoretically and experimentally for nitroxide spin labels. Spectral simulations were performed by iterative solution of the Bloch equations that contained explicitly both the modulation and microwave magnetic fields ...

متن کامل

Mechanism of relaxation enhancement of spin labels in membranes by paramagnetic ion salts: dependence on 3d and 4f ions and on the anions.

Progressive saturation EPR measurements and EPR linewidth determinations have been performed on spin-labeled lipids in fluid phospholipid bilayer membranes to elucidate the mechanisms of relaxation enhancement by different paramagnetic ion salts. Such paramagnetic relaxation agents are widely used for structural EPR studies in biological systems, particularly with membranes. Metal ions of the 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 171 2  شماره 

صفحات  -

تاریخ انتشار 2004